Solution:
Part A
A. Using a logit model, determine the probability of a traveler driving.
Solution Steps
- Compute Utility for Each Mode for Each Cell
- Compute Exponentiated Utilities for Each Cell
- Sum Exponentiated Utilities
- Compute Probability for Each Mode for Each Cell
- Multiply Probability in Each Cell by Number of Trips in Each Cell
Auto Utility:
| Origin\Destination
|
Dakotopolis
|
New Fargo
|
| Dakotopolis |
-5 |
-7
|
| New Fargo |
-7 |
-5
|
Transit Utility:
| Origin\Destination
|
Dakotopolis
|
New Fargo
|
| Dakotopolis |
-5 |
-10
|
| New Fargo |
-10 |
-3
|
| Origin\Destination
|
Dakotopolis
|
New Fargo
|
| Dakotopolis |
0.0067 |
0.0009
|
| New Fargo |
0.0009 |
0.0067
|
| Origin\Destination
|
Dakotopolis
|
New Fargo
|
| Dakotopolis |
0.0067 |
0.0000454
|
| New Fargo |
0.0000454 |
0.0565
|
Sum:
| Origin\Destination
|
Dakotopolis
|
New Fargo
|
| Dakotopolis |
0.0134 |
0.0009454
|
| New Fargo |
0.0009454 |
0.0498
|
P(Auto) =
| Origin\Destination
|
Dakotopolis
|
New Fargo
|
| Dakotopolis |
0.5 |
0.953
|
| New Fargo |
0.953 |
0.12
|
P(Transit) =
| Origin\Destination
|
Dakotopolis
|
New Fargo
|
| Dakotopolis |
0.5 |
0.047
|
| New Fargo |
0.047 |
0.88
|
Part B
B. Using the results from the previous problem (#2), how many car trips will there be?
Recall
Total Trips
| Origin\Destination
|
Dakotopolis
|
New Fargo
|
| Dakotopolis |
9395 |
5606
|
| New Fargo |
6385 |
15665
|
Total Trips by Auto =
| Origin\Destination
|
Dakotopolis
|
New Fargo
|
| Dakotopolis |
4697 |
5339
|
| New Fargo |
6511 |
1867
|