Radiobiology Equations
Tumor Growth
- Mitotic Index:[1]:252

- Labeling Index:

- Growth fraction:

- Tumor volume doubling time:

- Potential doubling time:

- Cell loss factor:

- Gompertzian Growth[2]:475
- Progressively slowing:
![{\displaystyle V=V_{0}\times \exp {\left[{{A \over B}\times {\left(1-\exp {\left[-Bt\right]}\right)}}\right]}}](../../a01ceeca6a3082220e2d004d019988763c4cb56d.svg)
- Small t (early):

- Large t (late):

Definitions
=M phase duration
=cell cycle duration (total duration of all phases)
=correction factor for uneven distribution of cells
=S phase duration
= tumor volume
= original tumor volume
= time
,
= constants
Cell survival curves
- Plating efficiency:

- Surviving fraction:

Do not distinguish mode of death (mitotic vs apoptotic)
Target theory
- Surviving fraction (single target-single hit):[3]

- Surviving fraction (multiple target-single hit):
![{\displaystyle SF=1-{\left(1-\exp \left[{-D \over D_{0}}\right]\right)}^{n}}](../../0a0d79df23469db6bc2bbd83c5bac66fb5a7201d.svg)
- Quasi-threshold dose:[4]



Definitions
=dose
=dose that decreases surviving fraction to 37%
=extrapolation number,
doses required to kill all cells
=dose that decreases SF to 10%
=number of fractions
Linear Quadratic model
- Fraction of cells surviving single dose
:[1]:228[5]:31

- Fraction of cells surviving fractions
:[5]:31
![{\displaystyle SF_{N}={\left(\exp \left[-\alpha d-\beta d^{2}\right]\right)}^{N}=\exp \left[-\alpha D-\beta Dd\right]}](../../53d895155df2668e30d0ef5df0aaf7ccf1b3fce7.svg)
- Biologically Effective Dose (same RBE):[1]:230
![{\displaystyle BED_{\alpha \over \beta }=N\times d\times \left[1+{d \over {\left({\alpha \over \beta }\right)}}\right]}](../../92359c150e3a7647aca773c8d92e26d9ec9c3641.svg)
- BED for high LET radiation (RBE adjusted):[4]:268
![{\displaystyle BED_{H}=N\times d\times \left[RBE_{max}+{d \over {\left({\alpha \over \beta }\right)}}\right]}](../../4647822331f668eafe85e73376167a40ef097945.svg)
- BED (time adjusted):[6]
![{\displaystyle BED_{time}=N\times d\times \left[1+{d \over {\left({\alpha \over \beta }\right)}}\right]-{0.693 \over \alpha \times T_{p}}\times {\left[T-T_{k}\right]}}](../../f65907e58a274fcd611cf45497000c7593c1be38.svg)
- Isoeffective dose:[7][8]

![{\displaystyle D_{2}=D_{1}\times \left[{{d_{1}+{\alpha \over \beta }} \over {d_{2}+{\alpha \over \beta }}}\right]}](../../99ab27028162c7adf6dca1683be60529608d1b2e.svg)
- Equivalent Dose in 2 Gy Fractions:

Definitions
=number of fractions
=dose
=linear coefficient, reflects cell radiosensitivity
=quadratic coefficient, reflects cell repair mechanisms
=kick-off or onset time
=average cell-number doubling time
=total absorbed dose
=weighting factor
Dose-response
- Tumor control probability (TCP)

![{\displaystyle TCP=\exp \left[-\lambda \right]}](../../cf3da6e4ae150fc5239289e5a00588c46ee98f59.svg)
![{\displaystyle TCP=\exp \left[-N_{0}\times \exp \left(-\alpha D-\beta dD\right)\right]}](../../d2716ee26534150b0327933736f321a25519c142.svg)

Definitions
=number of fractions
Linear Energy Transfer
- Linear Energy Transfer (LET):[9]:106

| Radiation type |
LET (keV/μm)
|
| Co-60 photon |
0.2
|
| 250 kVp photon |
2.0
|
| 150 MeV proton |
0.5
|
| 10 MeV proton |
4.7
|
| 14 MeV neutron |
100
|
| 18 MeV carbon |
108
|
| 2.5 MeV alpha |
166
|
| 75 MeV argon |
250
|
| 2 GeV iron |
1000
|
Optimal RBE as a function of LET at 100 keV/μm
Definitions
=average energy locally imparted to medium
=track length
Relative Biological Effectiveness
- Relative Biological Effectiveness (RBE):[9]:115

Definitions
=dose of 250 kVp x-rays
=dose of test radiation required to produce equal biological effect to 
Hypoxia
- Oxygen enhancement ratio:[1]:237

- OER Values:
- photon 3
- proton 3
- neutron 1.6
- energized ion 1
- alpha 1

References
- ↑ a b c d David S. Chang, Foster D. Lasley, Indra J. Das, Marc S. Mendonca, Joseph R. Dynlacht (2014). Basic Radiotherapy Physics and Biology. Springer. ISBN 9783319068411.
{{cite book}}: CS1 maint: uses authors parameter (link)
- ↑ H. Awwad (2013). Radiation Oncology: Radiobiological and Physiological Perspectives. Springer. ISBN 9789401578653.
{{cite book}}: CS1 maint: uses authors parameter (link)
- ↑ Beyzadeoglu, Murat, Ozyigit, Gokhan, Ebruli, Cüneyt (2010). Basic Radiation Oncology. Springer. ISBN 978-3-642-11665-0.
{{cite book}}: CS1 maint: uses authors parameter (link)
- ↑ a b Roger G. Dale, Bleddyn Jones (2007). Radiobiological Modelling in Radiation Oncology. British Institute of Radiology. ISBN 9780905749600.
{{cite book}}: CS1 maint: uses authors parameter (link)
- ↑ a b Lemoigne, Yves; Caner, Alessandra (2011). Radiation Protection in Medical Physics. Dordrecht: Springer. ISBN 9789400702479.
- ↑ Levitt, S.H. (2006). Technical basis of radiation therapy : practical clinical applications ; with 146 tables (4th ed.). Berlin: Springer. p. 8. ISBN 978-3-540-21338-3.
- ↑ Wambersie, A.; Menzel, H. G.; Andreo, P.; DeLuca, P. M.; Gahbauer, R.; Hendry, J. H.; Jones, D. T. L. (7 December 2010). "Isoeffective dose: a concept for biological weighting of absorbed dose in proton and heavier-ion therapies". Radiation Protection Dosimetry. 143 (2–4): 481–486. doi:10.1093/rpd/ncq410.
- ↑ Brahme, Anders (2014). Comprehensive Biomedical Physics. Newnes. p. 137. ISBN 9780444536334.
- ↑ a b Hall, Eric J.; Giaccia, Amato J. (2006). Radiobiology for the radiologist (6th ed.). Philadelphia: Lippincott Williams & Wilkins. ISBN 9780781741514.