Point of zero charge
The point of zero charge (pzc) is generally described as the pH at which the net electrical charge of the particle surface (i.e. adsorbent's surface) is equal to zero. This concept has been introduced in the studies dealing with colloidal flocculation to explain why pH is affecting the phenomenon.[1]
A related concept in electrochemistry is the electrode potential at the point of zero charge. Generally, the pzc in electrochemistry is the value of the negative decimal logarithm of the activity of the potential-determining ion in the bulk fluid.[2] The pzc is of fundamental importance in surface science. For example, in the field of environmental science, it determines how easily a substrate is able to adsorb potentially harmful ions. It also has countless applications in technology of colloids, e.g., flotation of minerals. Therefore, the pzc value has been examined in many application of adsorption to the environmental science.[3][4] The pzc value is typically obtained by titrations and several titration methods have been developed.[5][6] Related values associated with the soil characteristics exist along with the pzc value, including zero point of charge (zpc), point of zero net charge (pznc), etc.[7]
- ^ Sposito, Garrison (1998). "On Points of Zero Charge". Environmental Science & Technology. 32 (19): 2815–2819. Bibcode:1998EnST...32.2815S. doi:10.1021/es9802347. ISSN 0013-936X.
- ^ IUPAC Gold Book
- ^ Bakatula, Elisee Nsimba; Richard, Dominique; Neculita, Carmen Mihaela; Zagury, Gerald J. (2018). "Determination of point of zero charge of natural organic materials". Environmental Science and Pollution Research. 25 (8): 7823–7833. Bibcode:2018ESPR...25.7823B. doi:10.1007/s11356-017-1115-7. ISSN 1614-7499. PMID 29294236. S2CID 3946219.
- ^ Donaldson, Melissa A.; Bish, David L.; Raff, Jonathan D. (2014). "Soil surface acidity plays a determining role in the atmospheric-terrestrial exchange of nitrous acid". Proceedings of the National Academy of Sciences. 111 (52): 18472–18477. Bibcode:2014PNAS..11118472D. doi:10.1073/pnas.1418545112. ISSN 0027-8424. PMC 4284574. PMID 25512517.
- ^ Nasiruddin Khan, M.; Sarwar, Anila (2007). "Determination of points of zero charge of natural and treated adsorbents". Surface Review and Letters. 14 (3): 461–469. Bibcode:2007SRL....14..461N. doi:10.1142/S0218625X07009517. ISSN 0218-625X.
- ^ Bakatula, Elisee Nsimba; Richard, Dominique; Neculita, Carmen Mihaela; Zagury, Gerald J. (2018). "Determination of point of zero charge of natural organic materials". Environmental Science and Pollution Research. 25 (8): 7823–7833. Bibcode:2018ESPR...25.7823B. doi:10.1007/s11356-017-1115-7. ISSN 0944-1344. PMID 29294236. S2CID 3946219.
- ^ Kosmulski, Marek (2001). "Chemical Properties of Material Surfaces". Surfactant Science. 20011074. doi:10.1201/9780585418049. ISBN 978-0-8247-0560-2. ISSN 2155-6512.