Sabatier reaction
The Sabatier reaction or Sabatier process produces methane and water from a reaction of hydrogen with carbon dioxide at elevated temperatures (optimally 300–400 °C) and pressures (perhaps 3 megapascals (440 psi; 30 bar)[1]) in the presence of a nickel catalyst. It was discovered by the French chemists Paul Sabatier and Jean-Baptiste Senderens in 1897. Optionally, ruthenium on alumina (aluminium oxide) makes a more efficient catalyst. It is described by the following exothermic reaction:[2]
- ∆H = −165.0 kJ/mol
There is disagreement on whether the CO2 methanation occurs by first associatively adsorbing an adatom hydrogen and forming oxygen intermediates before hydrogenation or dissociating and forming a carbonyl before being hydrogenated.[3]
- ∆H = −206 kJ/mol
CO methanation is believed to occur through a dissociative mechanism where the carbon oxygen bond is broken before hydrogenation with an associative mechanism only being observed at high H2 concentrations.
Methanation reactions over different metal catalysts including Ni,[4] Ru[5] and Rh[6] have been widely investigated for the production of CH4 from syngas and other power to gas initiatives.[3] Nickel is the most widely used catalyst owing to its high selectivity and low cost.[2]
- ^ "Methanation process". HELMETH Project. Archived from the original on 2020-12-03. Retrieved 2020-11-13.
- ^ a b Rönsch, Stefan; Schneider, Jens; Matthischke, Steffi; Schlüter, Michael; Götz, Manuel; Lefebvre, Jonathan; Prabhakaran, Praseeth; Bajohr, Siegfried (2016-02-15). "Review on methanation – From fundamentals to current projects". Fuel. 166: 276–296. Bibcode:2016Fuel..166..276R. doi:10.1016/j.fuel.2015.10.111.
- ^ a b Miao, Bin; Ma, Su Su Khine; Wang, Xin; Su, Haibin; Chan, Siew Hwa (2016-06-13). "Catalysis mechanisms of CO2 and CO methanation". Catalysis Science & Technology. 6 (12): 4048. doi:10.1039/C6CY00478D.
- ^ Xavier, K.O; Sreekala, R.; Rashid, K.K.A; Yusuff, K.K.M; Sen, B. (1999). "Doping effects of cerium oxide on Ni/Al2O3 catalysts for methanation". Catalysis Today. 49 (1–3): 17–21. doi:10.1016/S0920-5861(98)00403-9.
- ^ Utaka, Toshimasa; Takeguchi, Tatsuya; Kikuchi, Ryuji; Eguchi, Koichi (2003). "CO removal from reformed fuels over Cu and precious metal catalysts". Applied Catalysis A: General. 246 (1): 117–124. Bibcode:2003AppCA.246..117U. doi:10.1016/S0926-860X(03)00048-6.
- ^ Panagiotopoulou, Paraskevi; Kondarides, Dimitris I.; Verykios, Xenophon E. (2008). "Selective methanation of CO over supported noble metal catalysts: Effects of the nature of the metallic phase on catalytic performance". Applied Catalysis A: General. 344 (1–2): 45–54. Bibcode:2008AppCA.344...45P. doi:10.1016/j.apcata.2008.03.039.