Antivenom
Milking a snake for the production of antivenom | |
| Clinical data | |
|---|---|
| Other names | antivenin, antivenene |
| AHFS/Drugs.com | Monograph |
| Routes of administration | injection |
| ATC code | |
| Identifiers | |
| ChemSpider |
|
Antivenom, also known as antivenin, venom antiserum, and antivenom immunoglobulin, is a specific treatment for envenomation. It is composed of antibodies and used to treat certain venomous bites and stings.[1] Antivenoms are recommended only if there is significant toxicity or a high risk of toxicity.[1] The specific antivenom needed depends on the species involved.[1] It is given by injection.[1]
Side effects may be severe.[1] They include serum sickness, shortness of breath, and allergic reactions including anaphylaxis.[1] Antivenom is traditionally made by collecting venom from the relevant animal and injecting small amounts of it into a domestic animal.[2] The antibodies that form are then collected from the domestic animal's blood and purified.[2]
Versions are available for spider bites, snake bites, fish stings, and scorpion stings.[3] Due to the high cost of producing antibody-based antivenoms and their short shelf lives when not refrigerated, alternative methods of production of antivenoms are being actively explored.[4] One such different method of production involves production from bacteria.[5] Another approach is to develop targeted drugs (which, unlike antibodies, are usually synthetic and easier to manufacture at scale).[6]
Antivenom was first developed in the late 19th century and came into common use in the 1950s.[2][7] It is on the World Health Organization's List of Essential Medicines.[8]
- ^ a b c d e f World Health Organization (2009). Stuart MC, Kouimtzi M, Hill SR (eds.). WHO Model Formulary 2008. World Health Organization. pp. 396–397. hdl:10665/44053. ISBN 9789241547659.
- ^ a b c Dart RC (2004). Medical Toxicology. Lippincott Williams & Wilkins. pp. 250–251. ISBN 9780781728454. Archived from the original on 2017-01-09.
- ^ British national formulary : BNF 69 (69 ed.). British Medical Association. 2015. p. 43. ISBN 9780857111562.
- ^ Knudsen C, Laustsen AH (April 2018). "Recent Advances in Next Generation Snakebite Antivenoms". Tropical Medicine and Infectious Disease. 3 (2): 42. doi:10.3390/tropicalmed3020042. PMC 6073149. PMID 30274438.
- ^ Molteni M. "Bacteria Are Brewing Up the Next Generation of Antivenoms". Wired – via www.wired.com.
- ^ "How to simplify the treatment of snake bites". The Economist. 2021-01-02. ISSN 0013-0613. Retrieved 2021-01-02.
- ^ Gad SC (2007). Handbook of Pharmaceutical Biotechnology. John Wiley & Sons. p. 692. ISBN 9780470117101. Archived from the original on 2017-01-09.
- ^ World Health Organization (2019). World Health Organization model list of essential medicines: 21st list 2019. Geneva: World Health Organization. hdl:10665/325771. WHO/MVP/EMP/IAU/2019.06. License: CC BY-NC-SA 3.0 IGO.