Bioassay

Bioassay setup
A biological test system (here: Daphnia magna) is exposed to various experimental conditions (here: several microplastics preparations), to which it reacts.
Some indicator of these reactions (e.g. a color change) is assessed, typically in a highly automated fashion through microplates like this.

A bioassay is an analytical method to determine the potency or effect of a substance by its effect on living animals or plants (in vivo), or on living cells or tissues (in vitro).[1][2] A bioassay can be either quantal or quantitative, direct or indirect.[3] If the measured response is binary, the assay is quantal; if not, it is quantitative.[3]

A bioassay may be used to detect biological hazards or to give an assessment of the quality of a mixture.[4] A bioassay is often used to monitor water quality as well as wastewater discharges and its impact on the surroundings.[5] It is also used to assess the environmental impact and safety of new technologies and facilities.

Bioassays are essential in pharmaceutical, medical and agricultural sciences for development and launching of new drugs, vitamins, etc.

  1. ^ Hoskins, W. M.; Craig, R. (1962-01-01). "Uses of Bioassay in Entomology". Annual Review of Entomology. 7 (1): 437–464. doi:10.1146/annurev.en.07.010162.002253. ISSN 0066-4170. PMID 14449182.
  2. ^ "Guidance for Industry: Potency Tests for Cellular and Gene Therapy Products". Washington, D.C.: U.S. Food and Drug Administration. January 2011. p. 7. Archived from the original on April 30, 2020.
  3. ^ a b Laska, E M; Meisner, M J (1987-04-01). "Statistical Methods and Applications of Bioassay". Annual Review of Pharmacology and Toxicology. 27 (1): 385–397. doi:10.1146/annurev.pa.27.040187.002125. ISSN 0362-1642. PMID 3579242.
  4. ^ Prinsloo, Gerhard; Papadi, Georgia; Hiben, Mebrahtom G.; Haan, Laura de; Louisse, Jochem; Beekmann, Karsten; Vervoort, Jacques; Rietjens, Ivonne M.C.M. (2017). "In vitro bioassays to evaluate beneficial and adverse health effects of botanicals: promises and pitfalls". Drug Discovery Today. 22 (8): 1187–1200. doi:10.1016/j.drudis.2017.05.002. PMID 28533190.
  5. ^ "Permit Limits-Whole Effluent Toxicity (WET)". National Pollutant Discharge Elimination System (NPDES). Washington, D.C.: U.S. Environmental Protection Agency (EPA). 2021-10-11.