Evolutionary therapy

Evolutionary therapy is a subfield of evolutionary medicine that utilizes concepts from evolutionary biology in management of diseases caused by evolving entities such as cancer and microbial infections.[1] These evolving disease agents adapt to selective pressure introduced by treatment, allowing them to develop resistance to therapy, making it ineffective.[2]

Evolutionary therapy relies on the notion that Darwinian evolution is the main reason behind lethality of late stage cancer and multi-drug resistant bacterial infections such as methicillin-resistant Staphylococcus aureus.[3] Thus, evolutionary therapy suggests that treatment of such highly dynamic evolving diseases should be changing over time to account for changes in disease populations.[4] Adaptive treatment strategies typically cycle between different drugs or drug doses to take advantage of predictable patterns of disease evolution. This is in contrast to standardized treatment approach which is applied to all patients and equally based on their cancer type and grade. There are still numerous obstacles to the use of evolutionary therapy in clinical practice. These obstacles include high contingency of trajectory, speed of evolution, and inability to track the population state of disease over time.

  1. ^ "Evolutionary Therapy". Moffitt Cancer Center. Open Publishing. Retrieved 2022-02-25.
  2. ^ Greaves M, Maley CC (January 2012). "Clonal evolution in cancer". Nature. 481 (7381): 306–313. Bibcode:2012Natur.481..306G. doi:10.1038/nature10762. PMC 3367003. PMID 22258609.
  3. ^ Davies J, Davies D (September 2010). "Origins and evolution of antibiotic resistance". Microbiology and Molecular Biology Reviews. 74 (3): 417–433. doi:10.1128/MMBR.00016-10. PMC 2937522. PMID 20805405.
  4. ^ Gatenby RA, Brown JS (November 2020). "Integrating evolutionary dynamics into cancer therapy". Nature Reviews. Clinical Oncology. 17 (11): 675–686. doi:10.1038/s41571-020-0411-1. PMID 32699310. S2CID 220681064.