GABA reuptake inhibitor

A GABA reuptake inhibitor (GRI) is a type of drug which acts as a reuptake inhibitor for the neurotransmitter gamma-Aminobutyric acid (GABA) by blocking the action of the gamma-Aminobutyric acid transporters (GATs). This in turn leads to increased extracellular concentrations of GABA and therefore an increase in GABAergic neurotransmission.[1] Gamma-aminobutyric acid (GABA) is an amino acid that functions as the predominant inhibitory neurotransmitter within the central nervous system, playing a crucial role in modulating neuronal activity in both the brain and spinal cord.[2] While GABA predominantly exerts inhibitory actions in the adult brain, it has an excitatory role during developmental stages.[3] When the neuron receives the action potential, GABA is released from the pre-synaptic cell to the synaptic cleft. After the action potential transmission, GABA is detected on the dendritic side, where specific receptors collectively contribute to the inhibitory outcome by facilitating GABA transmitter uptake. Facilitated by specific enzymes, GABA binds to post-synaptic receptors, with GABAergic neurons playing a key role in system regulation.[4] The inhibitory effects of GABA diminish when presynaptic neurons reabsorb it from the synaptic cleft for recycling by GABA transporters (GATs).[5] The reuptake mechanism is crucial for maintaining neurotransmitter levels and synaptic functioning.[6] Gamma-aminobutyric acid Reuptake Inhibitors (GRIs) hinder the functioning of GATs, preventing GABA reabsorption in the pre-synaptic cell. This results in increased GABA levels in the extracellular environment, leading to elevated GABA-mediated synaptic activity in the brain.[7][8]

Gamma-aminobutyric acid (GABA), the brain's main inhibitory neurotransmitter, plays a crucial role in regulating neuronal activity by dampening down neuron firing. Disruptions in GABAergic neurotransmission, such as reduced synthesis, reuptake dysfunction, or receptor abnormalities, can lead to various pathologies in the central nervous system, including epilepsy, anxiety disorders, Parkinson's disease, and sleep disorders. [9][10][11] The inhibitory neurotransmitter GABA plays a complex role in modulating anxiety and stress, regulating sleep, circadian rhythms, mood, cognition, and perception. Low GABA levels are associated with emotional and behavioral disruptions, including short-term and/or long-term stress, anxiety disorders, and sleep disorders.[12]

  1. ^ Bauer J, Cooper-Mahkorn D (2008-08-08). "Tiagabine: efficacy and safety in partial seizures – current status". Neuropsychiatric Disease and Treatment. 4 (4): 731–736. doi:10.2147/NDT.S833. PMC 2536540. PMID 19043517.
  2. ^ Jewett BE, Sharma S (2024), "Physiology, GABA", StatPearls, Treasure Island (FL): StatPearls Publishing, PMID 30020683, retrieved 2024-02-15
  3. ^ Allen MJ, Sabir S, Sharma S (2024), "GABA Receptor", StatPearls, Treasure Island (FL): StatPearls Publishing, PMID 30252380, retrieved 2024-02-15
  4. ^ Gottlieb DI (1988). "GABAergic Neurons". Scientific American. 258 (2): 82–89. Bibcode:1988SciAm.258b..82G. doi:10.1038/scientificamerican0288-82. ISSN 0036-8733. JSTOR 24988982. PMID 2847312.
  5. ^ Olsen RW, DeLorey TM (1999), "GABA Synthesis, Uptake and Release", Basic Neurochemistry: Molecular, Cellular and Medical Aspects. 6th edition, Lippincott-Raven, retrieved 2024-02-15
  6. ^ Salters-Pedneault, K. (2023, June 13). How selective serotonin reuptake inhibitors (ssris) works. Verywell Mind.
  7. ^ Zafar S, Jabeen I (2018). "Structure, Function, and Modulation of γ-Aminobutyric Acid Transporter 1 (GAT1) in Neurological Disorders: A Pharmacoinformatic Prospective". Frontiers in Chemistry. 6: 397. Bibcode:2018FrCh....6..397Z. doi:10.3389/fchem.2018.00397. ISSN 2296-2646. PMC 6141625. PMID 30255012.
  8. ^ Niessen WM (2020-10-01). "Interpretation of tandem mass spectra of antiepileptic drugs using accurate-m/z data and m/z-shifts with stable-isotope labeled analogues". International Journal of Mass Spectrometry. 456: 116409. Bibcode:2020IJMSp.456k6409N. doi:10.1016/j.ijms.2020.116409. ISSN 1387-3806. S2CID 224856466.
  9. ^ Perucca E, Bialer M, White HS (2023-09-01). "New GABA-Targeting Therapies for the Treatment of Seizures and Epilepsy: I. Role of GABA as a Modulator of Seizure Activity and Recently Approved Medications Acting on the GABA System". CNS Drugs. 37 (9): 755–779. doi:10.1007/s40263-023-01027-2. ISSN 1179-1934. PMC 10501955. PMID 37603262.
  10. ^ Motiwala Z, Aduri NG, Shaye H, Han GW, Lam JH, Katritch V, Cherezov V, Gati C (2022). "Structural basis of GABA reuptake inhibition". Nature. 606 (7915): 820–826. Bibcode:2022Natur.606..820M. doi:10.1038/s41586-022-04814-x. ISSN 1476-4687. PMC 9394549. PMID 35676483.
  11. ^ Loughlin, K. R., Generali, J. A. (2006). The Guide to Off-label Prescription Drugs: New Uses for FDA-approved Prescription Drugs. United Kingdom: Free Press.
  12. ^ Hepsomali P, Groeger JA, Nishihira J, Scholey A (2020). "Effects of Oral Gamma-Aminobutyric Acid (GABA) Administration on Stress and Sleep in Humans: A Systematic Review". Frontiers in Neuroscience. 14: 923. doi:10.3389/fnins.2020.00923. ISSN 1662-453X. PMC 7527439. PMID 33041752.