Neurodegeneration with brain iron accumulation
| Neurodegeneration with brain iron accumulation | |
|---|---|
| Other names | NBIA |
| Specialty | Neurology |
Neurodegeneration with brain iron accumulation is a heterogenous group of inherited neurodegenerative diseases, still under research, in which iron accumulates in the basal ganglia, either resulting in progressive dystonia, parkinsonism, spasticity, optic atrophy, retinal degeneration, neuropsychiatric, or diverse neurologic abnormalities.[1] Some of the NBIA disorders have also been associated with several genes in synapse and lipid metabolism related pathways.[2] NBIA is not one disease but an entire group of disorders, characterized by an accumulation of brain iron, sometimes in the presence of axonal spheroids in the central nervous system.[3]
Iron accumulation can occur anywhere in the brain, with accumulation typically occurring in globus pallidus, substantia nigra, pars reticula, striatum and cerebellar dentate nuclei.[4] Symptoms can include various movement disorders, neuropsychiatric issues, seizures, visual disturbances, and cognitive decline, usually in different combinations.[4] Ten to fifteen genetic NBIA disorders involving various cell processes have been identified: iron metabolism, coenzyme A biosynthesis, phospholipid metabolism, ceramide metabolism, lysosomal disorders, as well as mutations in genes with unknown functions.[5][4] Onset can occur at different ages, from early childhood to late adulthood.[4]
As of 2021 there were no curative treatments for any of the NBIA disorders, though several medications have been subject to clinical trial including the iron chelator deferiprone.[5]
- ^ Ward, Roberta J.; Chrichton, Robert R. (2019). "Chapter 4. Ironing out the Brain". In Sigel, Astrid; Freisinger, Eva; Sigel, Roland K. O.; Carver, Peggy L. (eds.). Essential Metals in Medicine:Therapeutic Use and Toxicity of Metal Ions in the Clinic. Vol. 19. Berlin: de Gruyter GmbH. pp. 87–122. doi:10.1515/9783110527872-010. ISBN 978-3-11-052691-2. PMID 30855105.
{{cite book}}:|journal=ignored (help) - ^ Bettencourt C, Forabosco P, Wiethoff S, Heidari M, Johnstone DM, Botía JA, Collingwood JF, Hardy J, Milward EA, Ryten M, Houlden H (March 2016). "Gene co-expression networks shed light into diseases of brain iron accumulation". primary. Neurobiology of Disease. 87: 59–68. doi:10.1016/j.nbd.2015.12.004. PMC 4731015. PMID 26707700.
- ^ Gregory A, Polster BJ, Hayflick SJ (February 2009). "Clinical and genetic delineation of neurodegeneration with brain iron accumulation". review. Journal of Medical Genetics. 46 (2): 73–80. doi:10.1136/jmg.2008.061929. PMC 2675558. PMID 18981035.
- ^ a b c d Dusek P, Schneider SA (August 2012). "Neurodegeneration with brain iron accumulation". review. Current Opinion in Neurology. 25 (4): 499–506. doi:10.1097/wco.0b013e3283550cac. PMID 22691760.
- ^ a b Spaull, Robert V. V.; Soo, Audrey K. S.; Hogarth, Penelope; Hayflick, Susan J.; Kurian, Manju A. (24 November 2021). "Towards Precision Therapies for Inherited Disorders of Neurodegeneration with Brain Iron Accumulation". Tremor and Other Hyperkinetic Movements. 11 (1): 51. doi:10.5334/tohm.661. PMC 8641530. PMID 34909266.