Omega−3 fatty acid

Omega−3 fatty acids, also called omega−3 oils, ω−3 fatty acids or n−3 fatty acids,[1] are polyunsaturated fatty acids (PUFAs) characterized by the presence of a double bond three atoms away from the terminal methyl group in their chemical structure.[2] They are widely distributed in nature, are important constituents of animal lipid metabolism, and play an important role in the human diet and in human physiology.[2][3] The three types of omega−3 fatty acids involved in human physiology are α-linolenic acid (ALA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). ALA can be found in plants, while DHA and EPA are found in algae and fish. Marine algae and phytoplankton are primary sources of omega−3 fatty acids.[4] DHA and EPA accumulate in fish that eat these algae.[5] Common sources of plant oils containing ALA include walnuts, edible seeds and flaxseeds as well as hempseed oil, while sources of EPA and DHA include fish and fish oils,[1] and algae oil.

Almost without exception, animals are unable to synthesize the essential omega−3 fatty acid ALA and can only obtain it through diet. However, they can use ALA, when available, to form EPA and DHA, by creating additional double bonds along its carbon chain (desaturation) and extending it (elongation). ALA (18 carbons and 3 double bonds) is used to make EPA (20 carbons and 5 double bonds), which is then used to make DHA (22 carbons and 6 double bonds).[1][2] The ability to make the longer-chain omega−3 fatty acids from ALA may be impaired in aging.[6] In foods exposed to air, unsaturated fatty acids are vulnerable to oxidation and rancidity.[2][7]

Omega−3 fatty acid supplementation has limited evidence of benefit in preventing cancer, all-cause mortality and most cardiovascular outcomes, although it modestly lowers blood pressure and reduces triglycerides. Since 2002, the United States Food and Drug Administration (FDA) has approved four fish oil-based prescription drugs for the management of hypertriglyceridemia, namely Lovaza, Omtryg (both omega-3-acid ethyl esters), Vascepa (ethyl eicosapentaenoic acid) and Epanova (omega-3-carboxylic acids).[8]

  1. ^ a b c "Omega−3 Fatty Acids". Office of Dietary Supplements, US National Institutes of Health. 17 December 2024. Retrieved 25 May 2025.
  2. ^ a b c d "Essential Fatty Acids". Micronutrient Information Center, Linus Pauling Institute, Oregon State University. 1 May 2019. Archived from the original on 17 April 2015. Retrieved 10 June 2021.
  3. ^ Scorletti E, Byrne CD (2013). "Omega−3 fatty acids, hepatic lipid metabolism, and nonalcoholic fatty liver disease". Annual Review of Nutrition. 33 (1): 231–248. doi:10.1146/annurev-nutr-071812-161230. PMID 23862644.
  4. ^ Jacobsen C, Nielsen NS, Horn AF, et al. (31 July 2013). Food Enrichment with Omega-3 Fatty Acids. Elsevier. p. 391. ISBN 978-0-85709-886-3. Archived from the original on 18 September 2023. Retrieved 5 February 2022.
  5. ^ "Farmed fish: a major provider or a major consumer of omega-3 oils?| GLOBEFISH |". Food and Agriculture Organization of the United Nations. Archived from the original on 3 February 2022. Retrieved 4 February 2022.
  6. ^ Freemantle E, Vandal M, Tremblay-Mercier J, et al. (September 2006). "Omega-3 fatty acids, energy substrates, and brain function during aging". Prostaglandins, Leukotrienes, and Essential Fatty Acids. 75 (3): 213–220. doi:10.1016/j.plefa.2006.05.011. PMID 16829066.
  7. ^ Chaiyasit W, Elias RJ, McClements DJ, et al. (2007). "Role of physical structures in bulk oils on lipid oxidation". Critical Reviews in Food Science and Nutrition. 47 (3): 299–317. doi:10.1080/10408390600754248. PMID 17453926. S2CID 10190504.
  8. ^ Cite error: The named reference skulas was invoked but never defined (see the help page).