Thrombotic thrombocytopenic purpura
| Thrombotic thrombocytopenic purpura | |
|---|---|
| Other names | Moschcowitz syndrome,[1] idiopathic thrombotic thrombocytopenic purpura[2] |
| Spontaneous bruising in a woman with critically low platelets | |
| Specialty | Hematology |
| Symptoms | Large bruises, fever, weakness, shortness of breath, confusion, headache[3][2] |
| Usual onset | Adulthood[3] |
| Causes | Unknown, bacterial infections, certain medications, autoimmune diseases, pregnancy[3] |
| Diagnostic method | Based on symptoms and blood tests[2] |
| Differential diagnosis | Hemolytic-uremic syndrome (HUS), atypical hemolytic uremic syndrome (aHUS)[4] |
| Treatment | Plasma exchange, immunosuppressants[1] |
| Prognosis | < 20% risk of death[1] |
| Frequency | 1 in 100,000 people[3] |
Thrombotic thrombocytopenic purpura (TTP) is a blood disorder that results in blood clots forming in small blood vessels throughout the body.[2] This results in a low platelet count, low red blood cells due to their breakdown, and often kidney, heart, and brain dysfunction.[1] Symptoms may include large bruises, fever, weakness, shortness of breath, confusion, and headache.[2][3] Repeated episodes may occur.[3]
In about half of cases a trigger is identified, while in the remainder the cause remains unknown.[3] Known triggers include bacterial infections, certain medications, autoimmune diseases such as lupus, and pregnancy.[3] The underlying mechanism typically involves antibodies inhibiting the enzyme ADAMTS13.[1] This results in decreased break down of large multimers of von Willebrand factor (vWF) into smaller units.[1] Less commonly TTP is inherited, known as Upshaw–Schulman syndrome, such that ADAMTS13 dysfunction is present from birth.[5] Diagnosis is typically based on symptoms and blood tests.[2] It may be supported by measuring activity of or antibodies against ADAMTS13.[2]
With plasma exchange the risk of death has decreased from more than 90% to less than 20%.[1] Immunosuppressants, such as glucocorticoids, and rituximab may also be used.[3] Platelet transfusions are generally not recommended.[6]
About 1 per 100,000 people are affected.[3] Onset is typically in adulthood and women are more often affected.[3] About 10% of cases begin in childhood.[3] The condition was first described by Eli Moschcowitz in 1924.[3] The underlying mechanism was determined in the 1980s and 1990s.[3]
- ^ a b c d e f g Kremer Hovinga JA, Coppo P, Lämmle B, Moake JL, Miyata T, Vanhoorelbeke K (April 2017). "Thrombotic thrombocytopenic purpura". Nature Reviews Disease Primers. 3 17020: 17020. doi:10.1038/nrdp.2017.20. ISSN 2056-676X. PMID 28382967. S2CID 11960153.
- ^ a b c d e f g "Immune-mediated thrombotic thrombocytopenic purpura". Genetic and Rare Diseases Information Center. U.S. Department of Health & Human Services. Archived from the original on 2018-10-20. Retrieved 2018-10-10.
- ^ a b c d e f g h i j k l m n Joly BS, Coppo P, Veyradier A (May 2017). "Thrombotic thrombocytopenic purpura". Blood. 129 (21): 2836–46. doi:10.1182/blood-2016-10-709857. ISSN 0006-4971. PMID 28416507. S2CID 2543348.
- ^ Cite error: The named reference
Geo2010was invoked but never defined (see the help page). - ^ Moake JL (January 2004). "Von Willebrand factor, ADAMTS-13, and thrombotic thrombocytopenic purpura". Seminars in Hematology. 41 (1): 4–14. doi:10.1053/j.seminhematol.2003.10.003. ISSN 0037-1963. PMID 14727254.
- ^ Wood, Marie E.; Philips, George K. (2003). Hematology/Oncology Secrets (3rd ed.). Elsevier. p. 68. ISBN 978-1-56053-516-4.