Platelet
| Platelets | |
|---|---|
Image from a light microscope (500 ×) from a Giemsa-stained peripheral blood smear showing platelets (small purple dots) surrounded by red blood cells (large gray circular structures) | |
| Details | |
| Precursor | Megakaryocytes |
| Function | Formation of blood clots; prevention of bleeding |
| Identifiers | |
| Latin | thrombocytus |
| MeSH | D001792 |
| FMA | 62851 |
| Anatomical terms of microanatomy | |
Platelets or thrombocytes (from Ancient Greek θρόμβος (thrómbos) 'clot' and κύτος (kútos) 'cell') are a part of blood whose function (along with the coagulation factors) is to react to bleeding from blood vessel injury by clumping to form a blood clot.[1] Platelets have no cell nucleus; they are fragments of cytoplasm from megakaryocytes which reside in bone marrow or lung tissue,[2] and then enter the circulation. Platelets are found only in mammals, whereas in other vertebrates (e.g. birds, amphibians), thrombocytes circulate as intact mononuclear cells.[3]: 3
One major function of platelets is to contribute to hemostasis: the process of stopping bleeding at the site where the lining of vessels (endothelium) has been interrupted. Platelets gather at the site and, unless the interruption is physically too large, they plug it. First, platelets attach to substances outside the interrupted endothelium: adhesion. Second, they change shape, turn on receptors and secrete chemical messengers: activation. Third, they connect to each other through receptor bridges: aggregation.[4] Formation of this platelet plug (primary hemostasis) is associated with activation of the coagulation cascade, with resultant fibrin deposition and linking (secondary hemostasis). These processes may overlap: the spectrum is from a predominantly platelet plug, or "white clot" to a predominantly fibrin, or "red clot" or the more typical mixture. Berridge adds retraction and platelet inhibition as fourth and fifth steps,[5] while others would add a sixth step, wound repair.[6] Platelets participate in both innate[7] and adaptive[8] intravascular immune responses.
In addition to facilitating the clotting process, platelets contain cytokines and growth factors which can promote wound healing and regeneration of damaged tissues.[9][10]
- ^ Laki K (December 1972). "Our ancient heritage in blood clotting and some of its consequences". Annals of the New York Academy of Sciences. 202 (1): 297–307. Bibcode:1972NYASA.202..297L. doi:10.1111/j.1749-6632.1972.tb16342.x. PMID 4508929. S2CID 45051688.
- ^ Lefrançais, Emma; Ortiz-Muñoz, Guadalupe; Caudrillier, Axelle; Mallavia, Beñat; Liu, Fengchun; Sayah, David M.; Thornton, Emily E.; Headley, Mark B.; David, Tovo; Coughlin, Shaun R.; Krummel, Matthew F. (April 2017). "The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors". Nature. 544 (7648): 105–9. Bibcode:2017Natur.544..105L. doi:10.1038/nature21706. ISSN 1476-4687. PMC 5663284. PMID 28329764.
- ^ Cite error: The named reference
Michelsonwas invoked but never defined (see the help page). - ^ Yip J, Shen Y, Berndt MC, Andrews RK (February 2005). "Primary platelet adhesion receptors". IUBMB Life. 57 (2): 103–8. doi:10.1080/15216540500078962. PMID 16036569. S2CID 12054259.
- ^ Berridge, Michael J. (1 October 2014). "Module 11: Cell Stress, Inflammatory Responses and Cell Death" (PDF). Cell Signalling Biology. Vol. 6. Portland Press. pp. 11-1 – 11-30. doi:10.1042/csb0001011 (inactive 12 July 2025).
{{cite book}}: CS1 maint: DOI inactive as of July 2025 (link) - ^ Etulain, Julia (2018-08-18). "Platelets in wound healing and regenerative medicine". Platelets. 29 (6): 556–568. doi:10.1080/09537104.2018.1430357. hdl:11336/93928. ISSN 0953-7104. PMID 29442539.
- ^ Gaertner F, Massberg S (December 2016). "Blood coagulation in immunothrombosis-At the frontline of intravascular immunity". Seminars in Immunology. 28 (6): 561–9. doi:10.1016/j.smim.2016.10.010. PMID 27866916.
- ^ Hampton T (April 2018). "Platelets' Role in Adaptive Immunity May Contribute to Sepsis and Shock". JAMA. 319 (13): 1311–2. doi:10.1001/jama.2017.12859. PMID 29614158.
- ^ Cecerska-Heryć E, Goszka M, Dołęgowska B (2022). "Applications of the regenerative capacity of platelets in modern medicine". Cytokine & Growth Factor Reviews. 64: 84–94. doi:10.1016/j.cytogfr.2021.11.003. PMID 34924312.
- ^ Xu J, Gou L, Qiu S (2020). "Platelet-rich plasma and regenerative dentistry". Australian Dental Journal. 65 (2): 131–142. doi:10.1111/adj.12754. PMC 7384010. PMID 32145082.