Coenzyme Q10
| Names | |
|---|---|
| Preferred IUPAC name
2-[(2E,6E,10E,14E,18E,22E,26E,30E,34E)-3,7,11,15,19,23,27,31,35,39-Decamethyltetraconta-2,6,10,14,18,22,26,30,34,38-decaen-1-yl]-5,6-dimethoxy-3-methylcyclohexa-2,5-diene-1,4-dione | |
Other names
Q10, CoQ10 /ˌkoʊˌkjuːˈtɛn/ | |
| Identifiers | |
CAS Number
|
|
3D model (JSmol)
|
|
| ChEBI | |
| ChEMBL | |
| ChemSpider | |
| ECHA InfoCard | 100.005.590 |
| KEGG | |
PubChem CID
|
|
| UNII | |
CompTox Dashboard (EPA)
|
|
InChI
| |
SMILES
| |
| Properties | |
Chemical formula
|
C59H90O4 |
| Molar mass | 863.365 g·mol−1 |
| Appearance | yellow or orange solid |
| Melting point | 48–52 °C (118–126 °F; 321–325 K) |
Solubility in water
|
insoluble |
| Pharmacology | |
| C01EB09 (WHO) | |
| Related compounds | |
Related quinones
|
1,4-Benzoquinone Plastoquinone Ubiquinol |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references
| |
Coenzyme Q (CoQ /ˌkoʊkjuː/), also known as ubiquinone, is a naturally occurring biochemical cofactor (coenzyme) and an antioxidant produced by the human body. The human body mainly produces the form known as coenzyme Q10 (CoQ10, ubidecarenone), but other forms exist.[1][2][3] CoQ is used by and found in many organisms, including animals and bacteria. As a result, it can also be obtained from dietary sources, such as meat, fish, seed oils, vegetables, and dietary supplements.[1][2]
CoQ plays a role in mitochondrial oxidative phosphorylation, aiding in the production of adenosine triphosphate (ATP), which is involved in energy transfer within cells.[1] The structure of CoQ10 consists of a benzoquinone moiety and an isoprenoid side chain, with the "10" referring to the number of isoprenyl chemical subunits in its tail.[4][5][6]
Although a ubiquitous molecule in human tissues, CoQ10 is not a dietary nutrient and does not have a recommended intake level, and its use as a supplement is not approved in the United States for any health or anti-disease effect.[1][2]
- ^ a b c d "Coenzyme Q10". Micronutrient Information Center, Linus Pauling Institute, Oregon State University. 2018. Archived from the original on 15 March 2024. Retrieved 13 April 2024.
- ^ a b c Sood B, Preeti Patel P, Keenaghan M (30 January 2024). "Coenzyme Q10". StatPearls, US National Library of Medicine. PMID 30285386. Archived from the original on 2 October 2023. Retrieved 17 April 2024.
- ^ "Coenzyme Q10". National Center for Complementary and Integrative Health, US National Institutes of Health. January 2019. Archived from the original on 4 April 2024. Retrieved 13 April 2024.
- ^ Mantle D, Lopez-Lluch G, Hargreaves IP (January 2023). "Coenzyme Q10 Metabolism: A Review of Unresolved Issues". International Journal of Molecular Sciences. 24 (3): 2585. doi:10.3390/ijms24032585. PMC 9916783. PMID 36768907. This article incorporates text from this source, which is available under the CC BY 4.0 license.
- ^ Kadian M, Sharma G, Pandita S, Sharma K, Shrivasatava K, Saini N, et al. (2022). "The Impact of Coenzyme Q10 on Neurodegeneration: A Comprehensive Review". Current Pharmacology Reports. 8: 1–19. doi:10.1007/s40495-021-00273-6.
- ^ Mantle D, Heaton RA, Hargreaves IP (May 2021). "Coenzyme Q10 and Immune Function: An Overview". Antioxidants. 10 (5): 759. doi:10.3390/antiox10050759. PMC 8150987. PMID 34064686. This article incorporates text from this source, which is available under the CC BY 4.0 license.