Coulson–Fischer theory
| Electronic structure methods |
|---|
| Valence bond theory |
|
Generalized valence bond Modern valence bond theory |
| Molecular orbital theory |
|
Hartree–Fock method Semi-empirical quantum chemistry methods Møller–Plesset perturbation theory Configuration interaction Coupled cluster Multi-configurational self-consistent field Quantum chemistry composite methods Quantum Monte Carlo |
| Density functional theory |
|
Time-dependent density functional theory Thomas–Fermi model Orbital-free density functional theory Adiabatic connection fluctuation dissipation theorem Görling-Levy pertubation theory Optimized effective potential method Linearized augmented-plane-wave method Projector augmented wave method |
| Electronic band structure |
|
Nearly free electron model Tight binding Muffin-tin approximation k·p perturbation theory Empty lattice approximation GW approximation Korringa–Kohn–Rostoker method |
In theoretical chemistry and molecular physics, Coulson–Fischer theory provides a quantum mechanical description of the electronic structure of molecules. The 1949 seminal work of Coulson and Fischer[1] established a theory of molecular electronic structure which combines the strengths of the two rival theories which emerged soon after the advent of quantum chemistry - valence bond theory and molecular orbital theory, whilst avoiding many of their weaknesses. For example, unlike the widely used Hartree–Fock molecular orbital method, Coulson–Fischer theory provides a qualitatively correct description of molecular dissociative processes.[2] The Coulson–Fischer wave function has been said to provide a third way in quantum chemistry.[3] Modern valence bond theory is often seen as an extension of the Coulson–Fischer method.
- ^ C.A. Coulson and I. Fischer, Notes on the Molecular Orbital Treatment of the Hydrogen Molecule, Phil. Mag. 40, 386 (1949)
- ^ S. Wilson and J. Gerratt, Calculation of potential energy curves for the ground state of the hydrogen molecule, Molec. Phys. 30, 777 (1975) https://doi.org/10.1080/14786444908521726
- ^ S. Wilson, On the Wave Function of Coulson and Fischer: A Third Way in Quantum Chemistry, in Advances in the Theory of Atomic and Molecular Systems, ed. P. Piecuch, J. Maruani, G. Delgado-Barrio and S. Wilson, Progress in Theoretical Chemistry and Physics 19, Springer (2009)