Valence bond theory
| Electronic structure methods |
|---|
|
Coulson–Fischer theory Generalized valence bond Modern valence bond theory |
| Molecular orbital theory |
|
Hartree–Fock method Semi-empirical quantum chemistry methods Møller–Plesset perturbation theory Configuration interaction Coupled cluster Multi-configurational self-consistent field Quantum chemistry composite methods Quantum Monte Carlo |
| Density functional theory |
|
Time-dependent density functional theory Thomas–Fermi model Orbital-free density functional theory Adiabatic connection fluctuation dissipation theorem Görling-Levy pertubation theory Optimized effective potential method Linearized augmented-plane-wave method Projector augmented wave method |
| Electronic band structure |
|
Nearly free electron model Tight binding Muffin-tin approximation k·p perturbation theory Empty lattice approximation GW approximation Korringa–Kohn–Rostoker method |
In chemistry, valence bond (VB) theory is one of the two basic theories, along with molecular orbital (MO) theory, that were developed to use the methods of quantum mechanics to explain chemical bonding. It focuses on how the atomic orbitals of the dissociated atoms combine to give individual chemical bonds when a molecule is formed. In contrast, molecular orbital theory has orbitals that cover the whole molecule.[1]
- ^ Murrell, J. N.; Kettle, S. F. A.; Tedder, J. M. (1985). The Chemical Bond (2nd ed.). John Wiley & Sons. ISBN 0-471-90759-6.