Quantum chemistry composite methods
| Electronic structure methods |
|---|
| Valence bond theory |
|
Coulson–Fischer theory Generalized valence bond Modern valence bond theory |
| Molecular orbital theory |
|
Hartree–Fock method Semi-empirical quantum chemistry methods Møller–Plesset perturbation theory Configuration interaction Coupled cluster Multi-configurational self-consistent field Quantum Monte Carlo |
| Density functional theory |
|
Time-dependent density functional theory Thomas–Fermi model Orbital-free density functional theory Adiabatic connection fluctuation dissipation theorem Görling-Levy pertubation theory Optimized effective potential method Linearized augmented-plane-wave method Projector augmented wave method |
| Electronic band structure |
|
Nearly free electron model Tight binding Muffin-tin approximation k·p perturbation theory Empty lattice approximation GW approximation Korringa–Kohn–Rostoker method |
Quantum chemistry composite methods (also referred to as thermochemical recipes)[1][2] are computational chemistry methods that aim for high accuracy by combining the results of several calculations. They combine methods with a high level of theory and a small basis set with methods that employ lower levels of theory with larger basis sets. They are commonly used to calculate thermodynamic quantities such as enthalpies of formation, atomization energies, ionization energies and electron affinities. They aim for chemical accuracy which is usually defined as within 1 kcal/mol of the experimental value. The first systematic model chemistry of this type with broad applicability was called Gaussian-1 (G1) introduced by John Pople. This was quickly replaced by the Gaussian-2 (G2) which has been used extensively. The Gaussian-3 (G3) was introduced later.
- ^ Ohlinger, William S.; Philip E. Klunzinger; Bernard J. Deppmeier; Warren J. Hehre (January 2009). "Efficient Calculation of Heats of Formation". The Journal of Physical Chemistry A. 113 (10). ACS Publications: 2165–2175. Bibcode:2009JPCA..113.2165O. doi:10.1021/jp810144q. PMID 19222177.
- ^ A. Karton (2016). "A computational chemist's guide to accurate thermochemistry for organic molecules" (PDF). Wiley Interdisciplinary Reviews: Computational Molecular Science. 6 (3): 292–310. doi:10.1002/wcms.1249. S2CID 102248364.