Roentgenium
| Roentgenium | |||||||||||||||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Pronunciation |
| ||||||||||||||||||||||||||||||||||||||||||||
| Mass number | [282] (unconfirmed: 286) | ||||||||||||||||||||||||||||||||||||||||||||
| Roentgenium in the periodic table | |||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||
| Atomic number (Z) | 111 | ||||||||||||||||||||||||||||||||||||||||||||
| Group | group 11 | ||||||||||||||||||||||||||||||||||||||||||||
| Period | period 7 | ||||||||||||||||||||||||||||||||||||||||||||
| Block | d-block | ||||||||||||||||||||||||||||||||||||||||||||
| Electron configuration | [Rn] 5f14 6d9 7s2 (predicted)[1][2] | ||||||||||||||||||||||||||||||||||||||||||||
| Electrons per shell | 2, 8, 18, 32, 32, 17, 2 (predicted) | ||||||||||||||||||||||||||||||||||||||||||||
| Physical properties | |||||||||||||||||||||||||||||||||||||||||||||
| Phase at STP | solid (predicted)[3] | ||||||||||||||||||||||||||||||||||||||||||||
| Density (near r.t.) | 22–24 g/cm3 (predicted)[4][5] | ||||||||||||||||||||||||||||||||||||||||||||
| Atomic properties | |||||||||||||||||||||||||||||||||||||||||||||
| Oxidation states | common: (none) (−1), (+3), (+5)[2] | ||||||||||||||||||||||||||||||||||||||||||||
| Ionization energies | |||||||||||||||||||||||||||||||||||||||||||||
| Atomic radius | empirical: 114 pm (predicted)[6] | ||||||||||||||||||||||||||||||||||||||||||||
| Covalent radius | 121 pm (estimated)[7] | ||||||||||||||||||||||||||||||||||||||||||||
| Other properties | |||||||||||||||||||||||||||||||||||||||||||||
| Natural occurrence | synthetic | ||||||||||||||||||||||||||||||||||||||||||||
| Crystal structure | body-centered cubic (bcc) (predicted)[3] | ||||||||||||||||||||||||||||||||||||||||||||
| CAS Number | 54386-24-2 | ||||||||||||||||||||||||||||||||||||||||||||
| History | |||||||||||||||||||||||||||||||||||||||||||||
| Naming | after Wilhelm Röntgen | ||||||||||||||||||||||||||||||||||||||||||||
| Discovery | Gesellschaft für Schwerionenforschung (1994) | ||||||||||||||||||||||||||||||||||||||||||||
| Isotopes of roentgenium | |||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||
Roentgenium (German: [ʁœntˈɡeːni̯ʊm] ⓘ) is a synthetic chemical element; it has symbol Rg and atomic number 111. It is extremely radioactive and can only be created in a laboratory. The most stable known isotope, roentgenium-282, has a half-life of 130 seconds, although the unconfirmed roentgenium-286 may have a longer half-life of about 10.7 minutes. Roentgenium was first created in December 1994 by the GSI Helmholtz Centre for Heavy Ion Research near Darmstadt, Germany. It is named after the physicist Wilhelm Röntgen (also spelled Roentgen), who discovered X-rays. Only a few roentgenium atoms have ever been synthesized, and they have no practical application.
In the periodic table, it is a d-block transactinide element. It is a member of the 7th period and is placed in the group 11 elements, although no chemical experiments have been carried out to confirm that it behaves as the heavier homologue to gold in group 11 as the ninth member of the 6d series of transition metals. Roentgenium is calculated to have similar properties to its lighter homologues, copper, silver, and gold, although it may show some differences from them.
- ^ Turler, A. (2004). "Gas Phase Chemistry of Superheavy Elements" (PDF). Journal of Nuclear and Radiochemical Sciences. 5 (2): R19 – R25. doi:10.14494/jnrs2000.5.R19.
- ^ a b c Hoffman, Darleane C.; Lee, Diana M.; Pershina, Valeria (2006). "Transactinides and the future elements". In Morss; Edelstein, Norman M.; Fuger, Jean (eds.). The Chemistry of the Actinide and Transactinide Elements (3rd ed.). Dordrecht, The Netherlands: Springer Science+Business Media. ISBN 978-1-4020-3555-5.
- ^ a b Östlin, A.; Vitos, L. (2011). "First-principles calculation of the structural stability of 6d transition metals". Physical Review B. 84 (11): 113104. Bibcode:2011PhRvB..84k3104O. doi:10.1103/PhysRevB.84.113104.
- ^ Gyanchandani, Jyoti; Sikka, S. K. (May 10, 2011). "Physical properties of the 6 d -series elements from density functional theory: Close similarity to lighter transition metals". Physical Review B. 83 (17): 172101. Bibcode:2011PhRvB..83q2101G. doi:10.1103/PhysRevB.83.172101.
- ^ Kratz; Lieser (2013). Nuclear and Radiochemistry: Fundamentals and Applications (3rd ed.). p. 631.
- ^ Hoffman, Darleane C.; Lee, Diana M.; Pershina, Valeria (2010). "Transactinide Elements and Future Elements". The Chemistry of the Actinide and Transactinide Elements. Dordrecht: Springer Netherlands. doi:10.1007/978-94-007-0211-0_14. ISBN 978-94-007-0210-3.
- ^ Chemical Data. Roentgenium - Rg, Royal Chemical Society
- ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
- ^ http://www.jinr.ru/posts/both-neutron-properties-and-new-results-at-she-factory/
- ^ Oganessian, Yuri Ts.; Abdullin, F. Sh.; Alexander, C.; Binder, J.; et al. (May 30, 2013). "Experimental studies of the 249Bk + 48Ca reaction including decay properties and excitation function for isotopes of element 117, and discovery of the new isotope 277Mt". Physical Review C. 87 (054621). American Physical Society. Bibcode:2013PhRvC..87e4621O. doi:10.1103/PhysRevC.87.054621.
- ^ a b Hofmann, S.; Heinz, S.; Mann, R.; et al. (2016). "Remarks on the Fission Barriers of SHN and Search for Element 120". In Peninozhkevich, Yu. E.; Sobolev, Yu. G. (eds.). Exotic Nuclei: EXON-2016 Proceedings of the International Symposium on Exotic Nuclei. Exotic Nuclei. pp. 155–164. doi:10.1142/9789813226548_0024. ISBN 9789813226555.