Beryllium
| Beryllium | |||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Pronunciation | /bəˈrɪliəm/ ⓘ | ||||||||||||||||||||||||||||||
| Appearance | white-gray metallic | ||||||||||||||||||||||||||||||
| Standard atomic weight Ar°(Be) | |||||||||||||||||||||||||||||||
| Beryllium in the periodic table | |||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||
| Atomic number (Z) | 4 | ||||||||||||||||||||||||||||||
| Group | group 2 (alkaline earth metals) | ||||||||||||||||||||||||||||||
| Period | period 2 | ||||||||||||||||||||||||||||||
| Block | s-block | ||||||||||||||||||||||||||||||
| Electron configuration | [He] 2s2 | ||||||||||||||||||||||||||||||
| Electrons per shell | 2, 2 | ||||||||||||||||||||||||||||||
| Physical properties | |||||||||||||||||||||||||||||||
| Phase at STP | solid | ||||||||||||||||||||||||||||||
| Melting point | 1560 K (1287 °C, 2349 °F) | ||||||||||||||||||||||||||||||
| Boiling point | 2742 K (2469 °C, 4476 °F) | ||||||||||||||||||||||||||||||
| Density (at 20 °C) | 1.845 g/cm3[3] | ||||||||||||||||||||||||||||||
| when liquid (at m.p.) | 1.690 g/cm3 | ||||||||||||||||||||||||||||||
| Critical point | 5400 K, 46 MPa (estimated)[4] | ||||||||||||||||||||||||||||||
| Heat of fusion | 12.2 kJ/mol | ||||||||||||||||||||||||||||||
| Heat of vaporization | 292 kJ/mol | ||||||||||||||||||||||||||||||
| Molar heat capacity | 16.443 J/(mol·K) | ||||||||||||||||||||||||||||||
Vapor pressure
| |||||||||||||||||||||||||||||||
| Atomic properties | |||||||||||||||||||||||||||||||
| Oxidation states | common: +2 0,[6] +1[8] | ||||||||||||||||||||||||||||||
| Electronegativity | Pauling scale: 1.57 | ||||||||||||||||||||||||||||||
| Ionization energies |
| ||||||||||||||||||||||||||||||
| Atomic radius | empirical: 112 pm | ||||||||||||||||||||||||||||||
| Covalent radius | 96±3 pm | ||||||||||||||||||||||||||||||
| Van der Waals radius | 153 pm | ||||||||||||||||||||||||||||||
| Spectral lines of beryllium | |||||||||||||||||||||||||||||||
| Other properties | |||||||||||||||||||||||||||||||
| Natural occurrence | primordial | ||||||||||||||||||||||||||||||
| Crystal structure | hexagonal close-packed (hcp) (hP2) | ||||||||||||||||||||||||||||||
| Lattice constants | a = 228.60 pm c = 358.42 pm (at 20 °C)[3] | ||||||||||||||||||||||||||||||
| Thermal expansion | 10.98×10−6/K (at 20 °C)[3][a] | ||||||||||||||||||||||||||||||
| Thermal conductivity | 200 W/(m⋅K) | ||||||||||||||||||||||||||||||
| Electrical resistivity | 36 nΩ⋅m (at 20 °C) | ||||||||||||||||||||||||||||||
| Magnetic ordering | diamagnetic | ||||||||||||||||||||||||||||||
| Molar magnetic susceptibility | −9.0×10−6 cm3/mol[9] | ||||||||||||||||||||||||||||||
| Young's modulus | 287 GPa | ||||||||||||||||||||||||||||||
| Shear modulus | 132 GPa | ||||||||||||||||||||||||||||||
| Bulk modulus | 130 GPa | ||||||||||||||||||||||||||||||
| Speed of sound thin rod | 12,890 m/s (at r.t.)[10] | ||||||||||||||||||||||||||||||
| Poisson ratio | 0.032 | ||||||||||||||||||||||||||||||
| Mohs hardness | 6.0 | ||||||||||||||||||||||||||||||
| Vickers hardness | 1670 MPa | ||||||||||||||||||||||||||||||
| Brinell hardness | 590–1320 MPa | ||||||||||||||||||||||||||||||
| CAS Number | 7440-41-7 | ||||||||||||||||||||||||||||||
| History | |||||||||||||||||||||||||||||||
| Naming | after mineral Beryl, from Greek βήρυλλος, which referred to various blue-green stones | ||||||||||||||||||||||||||||||
| Discovery | Louis Nicolas Vauquelin (1798) | ||||||||||||||||||||||||||||||
| First isolation | Friedrich Wöhler & Antoine Bussy (1828) | ||||||||||||||||||||||||||||||
| Isotopes of beryllium | |||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||
Beryllium is a chemical element; it has symbol Be and atomic number 4. It is a steel-gray, hard, strong, lightweight and brittle alkaline earth metal. It is a divalent element that occurs naturally only in combination with other elements to form minerals. Gemstones high in beryllium include beryl (aquamarine, emerald, red beryl) and chrysoberyl. It is a relatively rare element in the universe, usually occurring as a product of the spallation of larger atomic nuclei that have collided with cosmic rays. Within the cores of stars, beryllium is depleted as it is fused into heavier elements. Beryllium constitutes about 0.0004 percent by mass of Earth's crust. The world's annual beryllium production of 220 tons is usually manufactured by extraction from the mineral beryl, a difficult process because beryllium bonds strongly to oxygen.
In structural applications, the combination of high flexural rigidity, thermal stability, thermal conductivity and low density (1.85 times that of water) make beryllium a desirable aerospace material for aircraft components, missiles, spacecraft, and satellites.[12] Because of its low density and atomic mass, beryllium is relatively transparent to X-rays and other forms of ionizing radiation; therefore, it is the most common window material for X-ray equipment and components of particle detectors.[12] When added as an alloying element to aluminium, copper (notably the alloy beryllium copper), iron, or nickel, beryllium improves many physical properties.[12] For example, tools and components made of beryllium copper alloys are strong and hard and do not create sparks when they strike a steel surface. In air, the surface of beryllium oxidizes readily at room temperature to form a passivation layer 1–10 nm thick that protects it from further oxidation and corrosion.[13] The metal oxidizes in bulk (beyond the passivation layer) when heated above 500 °C (932 °F),[14] and burns brilliantly when heated to about 2,500 °C (4,530 °F).[15]
The commercial use of beryllium requires the use of appropriate dust control equipment and industrial controls at all times because of the toxicity of inhaled beryllium-containing dusts that can cause a chronic life-threatening allergic disease, berylliosis, in some people.[16] Berylliosis is typically manifested by chronic pulmonary fibrosis and, in severe cases, right sided heart failure and death.[17]
- ^ "Standard Atomic Weights: Beryllium". CIAAW. 2013.
- ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (4 May 2022). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
- ^ a b c d Arblaster, John W. (2018). Selected Values of the Crystallographic Properties of Elements. Materials Park, Ohio: ASM International. ISBN 978-1-62708-155-9.
- ^ Apfelbaum, E. M. (20 December 2012). "Estimate of Beryllium Critical Point on the Basis of Correspondence between the Critical and the Zeno-Line Parameters". The Journal of Physical Chemistry B. 116 (50): 14660–14666. doi:10.1021/jp309757a. ISSN 1520-6106. PMID 23194150.
- ^ Berthold, Chantsalmaa; Maurer, Johannes; Klerner, Lukas; Harder, Prof. Dr. Sjoerd; Buchner, Dr. Magnus R. (31 May 2024). "Formation, Structure and Reactivity of a Beryllium(0) Complex with Mgδ+−Beδ− Bond Polarization". Angewandte Chemie International Edition. 63 (35): e202408422. doi:10.1002/anie.202408422.
- ^ Beryllium(0) is present in LMgBeCp* (L = a complex diimide ligand, Cp* = pentamethylcyclopentadienyl) with a magnesium-beryllium polar bond.[5]
- ^ Boronski, Josef T.; Crumpton, Agamemnon E.; Wales, Lewis L.; Aldridge, Simon (16 June 2023). "Diberyllocene, a stable compound of Be(I) with a Be–Be bond". Science. 380 (6650): 1147–1149. Bibcode:2023Sci...380.1147B. doi:10.1126/science.adh4419. ISSN 0036-8075. PMID 37319227. S2CID 259166086.
- ^ Be(I) is known in CpBeBeCp.[7]
- ^ Weast, Robert (1984). CRC, Handbook of Chemistry and Physics. Boca Raton, Florida: Chemical Rubber Company Publishing. pp. E110. ISBN 0-8493-0464-4.
- ^ Haynes, William M., ed. (2011). CRC Handbook of Chemistry and Physics (92nd ed.). Boca Raton, Florida: CRC Press. p. 14.48. ISBN 1-4398-5511-0.
- ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
- ^ a b c Cite error: The named reference
deGruyterwas invoked but never defined (see the help page). - ^ Hoover, Mark D.; Castorina, Bryan T.; Finch, Gregory L.; Rothenberg, Simon J. (October 1989). "Determination of the Oxide Layer Thickness on Beryllium Metal Particles". American Industrial Hygiene Association Journal. 50 (10): 550–553. doi:10.1080/15298668991375146. ISSN 0002-8894. PMID 2801503.
- ^ Cite error: The named reference
Tomastik2005was invoked but never defined (see the help page). - ^ Maček, Andrej; McKenzie Semple, J. (1969). "Experimental burning rates and combustion mechanisms of single beryllium particles". Symposium (International) on Combustion. 12 (1): 71–81. doi:10.1016/S0082-0784(69)80393-0.
- ^ Puchta, Ralph (2011). "A brighter beryllium". Nature Chemistry. 3 (5): 416. Bibcode:2011NatCh...3..416P. doi:10.1038/nchem.1033. PMID 21505503.
- ^ Chong, S; Lee, KS; Chung, MJ; Han, J; Kwon, OJ; Kim, TS (January 2006). "Pneumoconiosis: comparison of imaging and pathologic findings". Radiographics. 26 (1): 59–77. doi:10.1148/rg.261055070. PMID 16418244.
Cite error: There are <ref group=lower-alpha> tags or {{efn}} templates on this page, but the references will not show without a {{reflist|group=lower-alpha}} template or {{notelist}} template (see the help page).
Cite error: There are <ref group=n> tags on this page, but the references will not show without a {{reflist|group=n}} template (see the help page).