Boron
boron (β-rhombohedral)[1] | ||||||||||||||||||||||||||
| Boron | ||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Pronunciation | /ˈbɔːrɒn/ ⓘ | |||||||||||||||||||||||||
| Allotropes | α-, β-rhombohedral, β-tetragonal (and more) | |||||||||||||||||||||||||
| Appearance | black-brown | |||||||||||||||||||||||||
| Standard atomic weight Ar°(B) | ||||||||||||||||||||||||||
| Boron in the periodic table | ||||||||||||||||||||||||||
| ||||||||||||||||||||||||||
| Atomic number (Z) | 5 | |||||||||||||||||||||||||
| Group | group 13 (boron group) | |||||||||||||||||||||||||
| Period | period 2 | |||||||||||||||||||||||||
| Block | p-block | |||||||||||||||||||||||||
| Electron configuration | [He] 2s2 2p1 | |||||||||||||||||||||||||
| Electrons per shell | 2, 3 | |||||||||||||||||||||||||
| Physical properties | ||||||||||||||||||||||||||
| Phase at STP | solid | |||||||||||||||||||||||||
| Melting point | 2349 K (2076 °C, 3769 °F) | |||||||||||||||||||||||||
| Boiling point | 4200 K (3927 °C, 7101 °F) | |||||||||||||||||||||||||
| Density when liquid (at m.p.) | 2.08 g/cm3 | |||||||||||||||||||||||||
| Heat of fusion | 50.2 kJ/mol | |||||||||||||||||||||||||
| Heat of vaporization | 508 kJ/mol | |||||||||||||||||||||||||
| Molar heat capacity | 11.087 J/(mol·K) | |||||||||||||||||||||||||
Vapor pressure
| ||||||||||||||||||||||||||
| Atomic properties | ||||||||||||||||||||||||||
| Oxidation states | common: +3 −5,[4] −1,[5] 0,[6] +1,[7][8] +2[7] | |||||||||||||||||||||||||
| Electronegativity | Pauling scale: 2.04 | |||||||||||||||||||||||||
| Ionization energies |
| |||||||||||||||||||||||||
| Atomic radius | empirical: 90 pm | |||||||||||||||||||||||||
| Covalent radius | 84±3 pm | |||||||||||||||||||||||||
| Van der Waals radius | 192 pm | |||||||||||||||||||||||||
| Spectral lines of boron | ||||||||||||||||||||||||||
| Other properties | ||||||||||||||||||||||||||
| Natural occurrence | primordial | |||||||||||||||||||||||||
| Crystal structure | rhombohedral | |||||||||||||||||||||||||
| Thermal expansion | β form: 5–7 µm/(m⋅K) (at 25 °C)[9] | |||||||||||||||||||||||||
| Thermal conductivity | 27.4 W/(m⋅K) | |||||||||||||||||||||||||
| Electrical resistivity | ~106 Ω⋅m (at 20 °C) | |||||||||||||||||||||||||
| Magnetic ordering | diamagnetic[10] | |||||||||||||||||||||||||
| Molar magnetic susceptibility | −6.7×10−6 cm3/mol[10] | |||||||||||||||||||||||||
| Speed of sound thin rod | 16,200 m/s (at 20 °C) | |||||||||||||||||||||||||
| Mohs hardness | ~9.5 | |||||||||||||||||||||||||
| CAS Number | 7440-42-8 | |||||||||||||||||||||||||
| History | ||||||||||||||||||||||||||
| Naming | after borax, from which it was isolated; Ultimately from Arabic بَوْرَق (bawraq) | |||||||||||||||||||||||||
| Discovery | Joseph Louis Gay-Lussac and Louis Jacques Thénard[11] (30 June 1808) | |||||||||||||||||||||||||
| First isolation | Humphry Davy[12] (9 July 1808) | |||||||||||||||||||||||||
| Isotopes of boron | ||||||||||||||||||||||||||
| ||||||||||||||||||||||||||
Boron is a chemical element; it has symbol B and atomic number 5. In its crystalline form it is a brittle, dark, lustrous metalloid; in its amorphous form it is a brown powder. As the lightest element of the boron group it has three valence electrons for forming covalent bonds, resulting in many compounds such as boric acid, the mineral sodium borate, and the ultra-hard crystals of boron carbide and boron nitride.
Boron is synthesized entirely by cosmic ray spallation and supernovas and not by stellar nucleosynthesis, so it is a low-abundance element in the Solar System and in the Earth's crust.[13] It constitutes about 0.001 percent by weight of Earth's crust.[14] It is concentrated on Earth by the water-solubility of its more common naturally occurring compounds, the borate minerals. These are mined industrially as evaporites, such as borax and kernite. The largest known deposits are in Turkey, the largest producer of boron minerals.
Elemental boron is found in small amounts in meteoroids, but chemically uncombined boron is not otherwise found naturally on Earth.
Several allotropes exist: amorphous boron is a brown powder; crystalline boron is silvery to black, extremely hard (9.3 on the Mohs scale), and a poor electrical conductor at room temperature (1.5 × 10−6 Ω−1 cm−1 room temperature electrical conductivity).[15] The primary use of the element itself is as boron filaments with applications similar to carbon fibers in some high-strength materials.
Boron is primarily used in chemical compounds. About half of all production consumed globally is an additive in fiberglass for insulation and structural materials. The next leading use is in polymers and ceramics in high-strength, lightweight structural and heat-resistant materials. Borosilicate glass is desired for its greater strength and thermal shock resistance than ordinary soda lime glass. As sodium perborate, it is used as a bleach. A small amount is used as a dopant in semiconductors, and reagent intermediates in the synthesis of organic fine chemicals. A few boron-containing organic pharmaceuticals are used or are in study. Natural boron is composed of two stable isotopes, one of which (boron-10) has a number of uses as a neutron-capturing agent.
Borates have low toxicity in mammals (similar to table salt) but are more toxic to arthropods and are occasionally used as insecticides. Boron-containing organic antibiotics are known. Although only traces are required, it is an essential plant nutrient.
- ^ Van Setten et al. 2007, pp. 2460–1
- ^ "Standard Atomic Weights: Boron". CIAAW. 2009.
- ^ Prohaska T, Irrgeher J, Benefield J, Böhlke JK, Chesson LA, Coplen TB, et al. (4 May 2022). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
- ^ B(−5) has been observed in Al3BC, see Schroeder M. "Eigenschaften von borreichen Boriden und Scandium-Aluminium-Oxid-Carbiden" (in German). p. 139.
- ^ B(−1) has been observed in magnesium diboride (MgB2), see Keeler J, Wothers P (2014). Chemical Structure and Reactivity: An Integrated Approach. Oxford University Press. ISBN 9780199604135.
- ^ Braunschweig H, Dewhurst RD, Hammond K, Mies J, Radacki K, Vargas A (2012). "Ambient-Temperature Isolation of a Compound with a Boron-Boron Triple Bond". Science. 336 (6087): 1420–2. Bibcode:2012Sci...336.1420B. doi:10.1126/science.1221138. PMID 22700924. S2CID 206540959.
- ^ a b Greenwood NN, Earnshaw A (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 28. doi:10.1016/C2009-0-30414-6. ISBN 978-0-08-037941-8.
- ^ Zhang, K.Q., Guo, B., Braun, V., Dulick, M., Bernath, P.F. (1995). "Infrared Emission Spectroscopy of BF and AIF" (PDF). J. Molecular Spectroscopy. 170 (1): 82. Bibcode:1995JMoSp.170...82Z. doi:10.1006/jmsp.1995.1058.
- ^ Holcombe Jr., C. E., Smith, D. D., Lorc, J. D., Duerlesen, W. K., Carpenter, D. A. (October 1973). "Physical-Chemical Properties of beta-Rhombohedral Boron". High Temp. Sci. 5 (5): 349–57.
- ^ a b Haynes, William M., ed. (2016). CRC Handbook of Chemistry and Physics (97th ed.). CRC Press. p. 4.127. ISBN 9781498754293.
- ^ Gay Lussac, J.L., Thenard, L.J. (1808). "Sur la décomposition et la recomposition de l'acide boracique". Annales de chimie. 68: 169–174.
- ^ Davy H (1809). "An account of some new analytical researches on the nature of certain bodies, particularly the alkalies, phosphorus, sulphur, carbonaceous matter, and the acids hitherto undecomposed: with some general observations on chemical theory". Philosophical Transactions of the Royal Society of London. 99: 39–104. doi:10.1098/rstl.1809.0005.
- ^ "Q & A: Where does the element Boron come from?". physics.illinois.edu. Archived from the original on 29 May 2012. Retrieved 4 December 2011.
- ^ "Boron". Britannica encyclopedia. Archived from the original on 4 August 2020. Retrieved 4 August 2020.
- ^ Kirk-Othmer, ed. (26 January 2001). Kirk-Othmer Encyclopedia of Chemical Technology (1 ed.). Wiley. doi:10.1002/0471238961.0215181510011419.a01.pub2. ISBN 978-0-471-48494-3.